Refine Your Search

Search Results

Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Journal Article

System Safety Applied To Vehicle Design

2008-10-07
2008-01-2680
The development of a modern transportation product requires that the safety of the product be considered at every stage of its life, from initial design to ultimate product disposal. Virtually all of the decisions that can positively effect product safety are made during the product design stage with most of the critical decisions being made early in the process. As a result, early incorporation of system safety into the design process has been shown repeatedly to result in safer products. Incorporation of formal system safety programs into ground transportation vehicle design programs is comparatively recent. Historically, in both the automotive and the heavy goods vehicle industry, product safety has been provided through consistent over design of evolutionary system elements to ensure correct functioning under repeated exposure to worst case stresses.
Research Report

Pitfalls of Designing, Developing, and Maintaining Modular Avionics Systems in the Name of Sustainability

2024-05-07
EPR2024010
Sustainability is both an ethical responsibility and business concern for the aerospace industry. Military and commercial avionics developers have pushed toward a common standard for interfaces, computing platforms, and software in hopes of having “reusability” and reducing weight with backplane computing architectures which, in theory, would support commonality across aircraft systems. The integrated modular avionics (IMA) and military Future Airborne Capability Environment (FACE) standards are two such examples. They emerged to support common computing architectures for reuse and sustainability concepts, from the beginning of aircraft development to the sundown or mortality phase. Pitfalls of Designing, Developing, and Maintaining Modular Avionics Systems in the Name of Sustainability looks at technological, organizational, and cultural challenges making reuse and IMA platform models difficult to fully realize their sustainability goals.
Technical Paper

Comparison of 15-5PH Stainless Steel Type 1 versus Type 2 Fatigue Data for Aircraft Primary Structural Elements

2015-09-15
2015-01-2613
15-5PH is a precipitation-hardening, martensitic stainless steel used for primary structural elements such as engine mounts where corrosion resistance, high strength, good fatigue and fracture toughness is required. The material composition is defined in AMS5659M. This alloy can be either Type 1 - vacuum arc remelt (VAR) or Type 2 - electro slag remelt (ESR) and is most commonly heat treated per SAE AMS-H-6875 or AMS2759/3 to condition H1025 (an ultimate tensile strength of 155 ksi [1070 MPa] minimum). Typically material handbooks have limited fatigue data and most data is only for Type 1. Therefore, the fatigue properties of 15-5PH H1025 stainless steel for both Type 1 and Type 2 were determined. The objective of the fatigue testing was to generate a family of S-N curves (maximum stress versus number of cycles to failure) for a series of stress ratios across the entire range of cycles to failure.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Technical Paper

F-15 Environment Control System Improvements

1990-07-01
901235
The continuing development of the F-15 has included improvements to its baseline Environment Control System (ECS), an open air cycle system built around a bootstrap air cycle machine. A simple air controller schedule change and the conversion to a High Pressure Water Separator (HPMS) ECS were steps in the evolution of the F-15 ECS which yielded gains in avionics cooling capacity of about 63%. Although there was no associated capacity increase, optimization of the cooling air distribution system was done to improve avionic reliability. Recent modifications of the F-15E aircraft to accommodate the Increased Performance Engines (IPE) have included ECS changes to maintain the capacity gains achieved previously. The higher bleed pressures and temperatures characteristic of the IPE have necessitated new pressure regulators, ducts, and heat exchangers. External scoops have been added to improve ram cooling airflow.
Technical Paper

Off-Road Stability of Recreational Vehicles

1979-02-01
790188
An attempt is made to describe the stability of vehicles on very rough terrain that may have large slopes. The basic premise of the paper is that the theory of ship stability is more applicable to problems of this kind than the traditional on-read vehicle stability theories. The linear theory is discussed as is driving on a rough slope, pitching, vertical oscillations and large angles. The methods of catastrophe theory as presented originally by Zeeman are used in an attempt to explain the behavior of the off-road vehicles.
Technical Paper

Fuel for the Supersonic Transport

1965-02-01
650297
The importance of fuel costs provide a strong incentive to operate the SST on existing jet fuels. Potential fuel system problems peculiar to the supersonic transport such as fuel boiling, spontaneous ignition, deposit formation, lubricity, and combustion characteristics are reviewed. The significance of these problems is established. Their severity depends on the particular environment provided by the designer. The difficulties of defining fuel properties to eliminate these problems are covered. The paper shows that major steps have been taken to operate the SST on current quality jet fuels but all necessary fuel quality control tests are not yet available.
Technical Paper

Wire Braid Angle Response Characteristics in Hydraulic Hose

1997-09-08
972706
This report is concerned with the effects of braid angle on the behavior of hydraulic hose. For equilibrium conditions to exist, and if the braid layers are assumed to bear tension forces only, the angle of the reinforcement layers must be along that of the total force exerted by the internal pressure. This is the neutral angle θN, which has a theoretical value of 54.74° (54°44′). It is possible to hypothesize a fretting wear model in which wires move on top of one another inside a braid layer if the braid angle is different from this theoretical neutral angle. Even though theoretical claims are made by some technical professionals, the hydraulic hose industry has been successfully making hoses with non-neutral braid angles for years. Testing and application have shown that fretting wear is not a principal cause of hose failure and fatigue.
Journal Article

Planning for the Application of ARP4754A for New and Modified Aircraft Projects with New, Simple, and Reused Systems

2015-09-15
2015-01-2431
Aerospace Recommended Practice (ARP) 4754 Revision A (ARP4754A), “Guidelines for Development of Civil Aircraft and Systems,” [1] is recognized through Advisory Circular (AC) 20-174 (AC 20-174) [2] as a way (but not the only way) to provide development assurance for aircraft and systems to minimize the possibility of development errors. ARP4754A and its companion, Aerospace Information Report (AIR) 6110, “Contiguous Aircraft/System Development Process Example,” [3] primarily describe development processes for an all new, complex and highly integrated aircraft without strong consideration for reused systems or simple systems. While ARP4754A section 5 mentions reuse, similarity, and complexity, and section 6 is intended to cover modification programs, the descriptions in these sections can be unclear and inconsistent. The majority of aircraft projects are not completely new Products nor are they entirely comprised of complex and highly integrated systems.
Technical Paper

Automated TARA Framework for Cybersecurity Compliance of Heavy Duty Vehicles

2024-04-09
2024-01-2809
Recent advancements towards autonomous heavy-duty vehicles are directly associated with increased interconnectivity and software driven features. Consequently, rise of this technological trend is bringing forth safety and cybersecurity challenges in form of new threats, hazards and vulnerabilities. As per the recent UN vehicle regulation 155, several risk-based security models and assessment frameworks have been proposed to counter the growing cybersecurity issues, however, the high budgetary cost to develop the tool and train personnel along with high risk of leakage of trade secrets, hinders the automotive manufacturers from adapting these third party solutions. This paper proposes an automated Threat Assessment & Risk Analysis (TARA) framework aligned with the standard requirements, offering an easy to use and fully customizable framework. The proposed framework is tailored specifically for heavy-duty vehicular networks and it demonstrates its effectiveness on a case study.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
X